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The Glauber model is reconsidered based on a quantum formulation of the master equation. Unlike the
conventional approach the temperature and the Ising energy are included from the beginning by introducing a
Heisenberg-like picture of the second quantized operators. This method enables us to get an exact expression
for the transition rate of a single flip process wi��i� which is in accordance with the principle of detailed
balance. The transition rate differs significantly from the conventional one due to Glauber in the low-
temperature regime. Here the behavior is controlled by the Ising energy and not by the microscopic time scale.
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The kinetic Ising model is a very simple but effective
model to study nonequilibrium situations. The model is
based on the Ising model which describes the interaction of a
set of spins with values ��i= ±1� at each lattice site i. Start-
ing from an arbitrary initial state, the simplest dynamics con-
sist of a single spin-flip process �i→−�i which is realized
with a certain transition rate wi��i�. This rate is included into
a master equation, which is an equation of motion for the
single-time probability p�n , t�. In our case the configuration
n consists of the set of all spins in d dimensions. This is
usually referred to as the Glauber model �1�. The problem is
to find an analytical expression for the transition rate. In
order to ensure that the system eventually relaxes to an equi-
librium state, one imposes the principle of detailed balance,
and the transition rate is chosen in accordance with that prin-
ciple. One choice is proposed in �2�:

wi
G��i� =

1

2�
�1 − �i tanh�Ei

T
	
 . �1�

Here the temperature T is given in terms of the Boltzmann
constant and Ei is the local energy of the Ising model,

Ei = hi + �
j�i�

Jij� j , �2�

where j�i� means the sum over all nearest neighbors of lattice
site i. The local energy arises from the Hamiltonian given by

H = − �
i

hi�i −
1

2�
i,j

Jij�i� j . �3�

The quantity hi is an external field, and the summation in the
interacting part goes over all pairs of nearest-neighbor spins.
Notice that the choice of the transition rate in Eq. �1� is not
unique. Moreover, the interaction energy and the coupling to
the heat bath with temperature T are only incorporated into
the master equation via the principle of detailed balance. Let

us stress that the different choices for the transition probabil-
ity are discussed in the context of Monte Carlo methods �3�.
The goal of the present Brief Report is to include the energy
functional and the temperature directly into the master equa-
tion from the beginning. With that aim we use a mapping of
the master equation onto a dynamic equation in terms of
second quantized operators �4–8�; for a recent review see
�9�.

Let us start from a general master equation written in the
form

�tp�n,t� = �
n�

�w�n�n��p�n�,t� − w�n��n�p�n,t��

 �
n�

L�n,n��p�n�,t� . �4�

Here p�n , t� is the probability that a certain configuration n is
realized at time t and w�n �n�� plays the role of the transition
probability per unit time from configuration n to n�. In our
case the configuration n is given by the orientation of the set
of spins. The principle of detailed balance means that the
stationary distribution ps�n� satisfies

ps�n��
ps�n�

=
w�n��n�
w�n�n��

. �5�

In case the static properties of the system are governed by a
Hamiltonian let us make the following ansatz:

w�n��n� = exp�− �H�n��/2�V�n��n�exp��H�n�/2� . �6�

This ansatz is motivated by the conventional Arrhenius an-
satz for transition rates; see also the result obtained in Eq.
�13� and the comment made there. Further let us remark that
we have assumed the validity of the commutator relation
�H�n� ,H�n���=0. In Eq. �6� the parameter � is an arbitrary
one. In case the system is coupled to a heat bath we will
identify � with the inverse temperature T in units of the
Boltzmann constant. Then the stationary condition Eq. �5�
can be rewritten as
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ps�n��
ps�n�

=
V�n��n�
V�n�n��

exp���H�n� − H�n���� . �7�

Inserting Eq. �6� in the master equation �4� we get

�tp�n,t� = �
n�

�exp�− �H�n�/2�V�n�n��exp��H�n��/2�p�n�,t�

− exp�− �H�n��/2�V�n��n�exp��H�n�/2�p�n,t�� .

�8�

Now the further aim is to rewrite Eq. �8� using second quan-
tized operators. Following Refs. �4–6,8,10,11�, the probabil-
ity distribution p�n , t� can be related to a state vector �F�t�� in
a Fock space according to p�n , t�= �n �F�t�� and �F�t��
=�np�n , t� �n�, respectively, where the basic vectors �n� can
be expressed by second quantized operators. Using this rep-
resentation, the underlying master equation can be trans-
formed into an equivalent evolution equation in a Fock
space, written in the form

�t�F�t�� = L̂�F�t�� . �9�

The dynamical matrix elements L�n ,n�� within the master

equation are mapped onto the operator L̂= L̂�a ,a†�, where a
and a† are the annihilation and creation operators, respec-

tively. Here the matrix elements of the operator L̂�a ,a†� co-
incide with the matrix elements L�n ,n��. Originally, this
transformation had been applied for the Bose case with un-
restricted occupation numbers �4–6�. Here, we consider the
case of restricted occupation numbers �7,8,10,11�. In order to
preserve the restriction of the occupation number in the un-
derlying dynamical equations, the commutation rules of the
operators a and a† are chosen as Pauli operators �7,8,13�:

�ai,aj
†� = �ij�1 − 2ai

†ai�, �ai,aj� = �ai
†,ai

†� = 0, ai
2 = �ai

†�2

= 0. �10�

The relation to the spin variable is �i=1−2ai
†ai. In case of a

single spin-flip process the evolution operator L̂ reads

L̂ = �
i

���1 − ai
†�ai + ��1 − ai�ai

†� , �11�

where � and � are the temperature-dependent transition
rates; the determination of those is beyond the scope of the
present approach. The flip rates are assumed in accordance
with the principle of detailed balance manifested in Eq. �5�.
Obviously, the transition rates should depend on the details
of the mutual interaction of the spins. Therefore the evolu-
tion operator should be extended by including the tempera-
ture and the interaction. In accordance with Eq. �8� we pro-
pose the following generalization:

L̂ = 	�
i

��1 − ai
†�exp�− �H/2�ai exp��H/2�

+ �1 − ai� exp�− �H/2�ai
†exp��H/2�� . �12�

Here, 	 is a parameter that fixes the time scale of the flip
process and H is the Hamiltonian for the underlying interac-
tion given by Eq. �3�. Because of the relation between �i and

the annihilation and creation operators the evolution operator
can be rewritten in terms of these operators as

L̂ = 	�
i
��1 − ai

†�ai exp�Ei

T
	 + �1 − ai�ai

† exp�−
Ei

T
	


with Ei = hi + J�0� − 2�
j�i�

Jijaj
†aj, J�0� = �

i

Jij .

�13�

Notice that the last relation is derived only by using the
algebraic properties of the operators. In case of vanishing
mutual interaction, i.e., J=0, one observes that the last rela-
tion is equivalent to the conventional Arrhenius ansatz. With
that aim the comparison of Eqs. �11� and �13� yields the
identification �=	 exp�h /T� and �=	 exp�−h /T� according
to the Arrhenius ansatz. Our quantum approach yields there-
fore the possibility of formulating the Arrhenius ansatz in a
more formal and mathematical manner.

To proceed further we follow Doi �4� and calculate the
average of an arbitrary physical quantity B�n� by using the
average of the corresponding operator B=�n �n�B�n��n� via
�12�

�B�t�� = �
n

p�n,t�B�n� = �s�B�F�t�� . �14�

Here we have used the projection state �s � =�n�n�, which is
realized only for spin-1 /2 fermions in such a simple form.
The normalization condition for the probability density is
included in the condition �s �F�t��=1 with the consequence
�12� that the evolution operator satisfies always the relation
�s �L=0. In the present case the averaged spin variable obeys

1

2	

�

�t
��i� = �sinh�Ei

T
	� − ��i cosh�Ei

T
	� . �15�

Based upon the conventional master equation Eq. �4� the
averaged spin satisfies

�

�t
��i� = − 2��iwi��i�� , �16�

where due to Glauber �1� or Suzuki et al. �2� the single-
transition rate wi��i�w��1 , . . . ,�i , . . . ,�N ��1 , . . . ,
−�i , . . . ,�N� is heuristically chosen in Eq. �1�. This form of
the transition rate is not uniquely determined by the principle
of detailed balance. In our approach we can directly find the
transition rate by applying the relation

�i exp�−
Ei�i

T
	 = �i cosh�Ei

T
	 − sinh�Ei

T
	 .

Using this relation and Eqs. �15� and �16� we get immedi-
ately

wi��i� = 	 exp�−
Ei�i

T
	  	 cosh�Ei

T
	�1 − �i tanh�Ei

T
	
 .

�17�

The transition rate is related to the heuristic one by assuming
that the time scale � in Eq. �1� is controlled by the spin

BRIEF REPORTS PHYSICAL REVIEW E 73, 062101 �2006�

062101-2



configuration as well as the temperature. Now let us discuss
the transition rate obtained by Eq. �17� in detail, especially
for the case of a vanishing external field. In that case the
local energy is reduced to Ei=� j�i�Jij� j, where the summa-
tion is performed over all the z nearest neighbors of the
lattice site i. In the high-temperature limit the transition
probabilities wi

G and wi show the same behavior. In that case
the transition rate is obviously only determined by the mi-
croscopic time scale � or 	−1. Both probabilities are inde-
pendent of the spin configuration. In the low-temperature
limit T�Ei the situation is completely different. Let us first
assume that the spin at site i is directed upward, i.e., �i=1.
Then one has to distinguish two cases.

�i� Ei
0. In this realization the majority of nearest-
neighbor spins are not adapted to the preferred upward di-
rection of the spin �i. In other words, the local spin configu-
ration around �i is unfavorable. As a consequence the
transition probabilities behave like

lim
T→0

wi��i = 1� = 	 exp��Ei�/T� ,

lim
T→0

wi
G��i = 1� =

1

�
. �18�

While in the Glauber transition rate the microscopic time
scale �−1 plays the role of a lower cutoff, i.e., spin flips are
possible within this time scale, in our realization the transi-
tion rate is controlled by the energy Ei of the Ising model.
The rate increases drastically and leads to an immediate flip
process of the “wrong” spins. The time scale �i for a flip is of
the order

�i � 	−1 exp�− �Ei�/T� .

The spins in the energetically unfavorable direction perform
the flips with a very high rate in a quite short time interval.

�ii� Ei�0. In that case the majority of the spins around
lattice site i are already adapted and the transition rate tends
to zero according to

wi��i = 1� = 	 exp�− Ei/T� . �19�

A similar behavior is also observed within the approximation
due to Glauber.

In the second case we consider the downward orientation
�i=−1. As above we study the two cases of positive and
negative local energy Ei. For Ei
0 we get in the low-
temperature regime

lim
T→0

wi��i = − 1� = 	 exp�− �Ei�/T� → 0. �20�

The transition rate tends to zero, i.e., all spin flips are sup-
pressed completely. In the opposite case Ei�0 the result is

lim
T→0

wi��i = − 1� = 	 exp�Ei/T� , �21�

which supports a very high flip rate, whereas the Glauber
rate remains simply constant.

Summarizing our Brief Report, we have reconsidered the
well-established kinetic Ising model in terms of second
quantized operators. The coupling to a heat bath at tempera-
ture T and the underlying interaction are included similar to
the Heisenberg picture of operators. As a result we get an
exact expression for the transition rate which is likewise in
accordance with detailed balance. The differences from the
conventional Glauber model consists in the low-temperature
regime. Here the transition rate is controlled by the Ising
energy and not by the microscopic time scale. For low tem-
peratures the transition rate is better adapted to the physical
situation in mind.
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